3.4.83 \(\int \frac {x \sqrt {1-c^2 x^2}}{(a+b \arcsin (c x))^2} \, dx\) [383]

3.4.83.1 Optimal result
3.4.83.2 Mathematica [A] (verified)
3.4.83.3 Rubi [A] (verified)
3.4.83.4 Maple [A] (verified)
3.4.83.5 Fricas [F]
3.4.83.6 Sympy [F]
3.4.83.7 Maxima [F]
3.4.83.8 Giac [B] (verification not implemented)
3.4.83.9 Mupad [F(-1)]

3.4.83.1 Optimal result

Integrand size = 26, antiderivative size = 150 \[ \int \frac {x \sqrt {1-c^2 x^2}}{(a+b \arcsin (c x))^2} \, dx=-\frac {x \left (1-c^2 x^2\right )}{b c (a+b \arcsin (c x))}+\frac {\cos \left (\frac {a}{b}\right ) \operatorname {CosIntegral}\left (\frac {a+b \arcsin (c x)}{b}\right )}{4 b^2 c^2}+\frac {3 \cos \left (\frac {3 a}{b}\right ) \operatorname {CosIntegral}\left (\frac {3 (a+b \arcsin (c x))}{b}\right )}{4 b^2 c^2}+\frac {\sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a+b \arcsin (c x)}{b}\right )}{4 b^2 c^2}+\frac {3 \sin \left (\frac {3 a}{b}\right ) \text {Si}\left (\frac {3 (a+b \arcsin (c x))}{b}\right )}{4 b^2 c^2} \]

output
-x*(-c^2*x^2+1)/b/c/(a+b*arcsin(c*x))+1/4*Ci((a+b*arcsin(c*x))/b)*cos(a/b) 
/b^2/c^2+3/4*Ci(3*(a+b*arcsin(c*x))/b)*cos(3*a/b)/b^2/c^2+1/4*Si((a+b*arcs 
in(c*x))/b)*sin(a/b)/b^2/c^2+3/4*Si(3*(a+b*arcsin(c*x))/b)*sin(3*a/b)/b^2/ 
c^2
 
3.4.83.2 Mathematica [A] (verified)

Time = 0.27 (sec) , antiderivative size = 125, normalized size of antiderivative = 0.83 \[ \int \frac {x \sqrt {1-c^2 x^2}}{(a+b \arcsin (c x))^2} \, dx=\frac {-\frac {4 b c x}{a+b \arcsin (c x)}+\frac {4 b c^3 x^3}{a+b \arcsin (c x)}+\cos \left (\frac {a}{b}\right ) \operatorname {CosIntegral}\left (\frac {a}{b}+\arcsin (c x)\right )+3 \cos \left (\frac {3 a}{b}\right ) \operatorname {CosIntegral}\left (3 \left (\frac {a}{b}+\arcsin (c x)\right )\right )+\sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a}{b}+\arcsin (c x)\right )+3 \sin \left (\frac {3 a}{b}\right ) \text {Si}\left (3 \left (\frac {a}{b}+\arcsin (c x)\right )\right )}{4 b^2 c^2} \]

input
Integrate[(x*Sqrt[1 - c^2*x^2])/(a + b*ArcSin[c*x])^2,x]
 
output
((-4*b*c*x)/(a + b*ArcSin[c*x]) + (4*b*c^3*x^3)/(a + b*ArcSin[c*x]) + Cos[ 
a/b]*CosIntegral[a/b + ArcSin[c*x]] + 3*Cos[(3*a)/b]*CosIntegral[3*(a/b + 
ArcSin[c*x])] + Sin[a/b]*SinIntegral[a/b + ArcSin[c*x]] + 3*Sin[(3*a)/b]*S 
inIntegral[3*(a/b + ArcSin[c*x])])/(4*b^2*c^2)
 
3.4.83.3 Rubi [A] (verified)

Time = 0.97 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.22, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.423, Rules used = {5214, 5134, 3042, 3784, 25, 3042, 3780, 3783, 5146, 4906, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x \sqrt {1-c^2 x^2}}{(a+b \arcsin (c x))^2} \, dx\)

\(\Big \downarrow \) 5214

\(\displaystyle -\frac {3 c \int \frac {x^2}{a+b \arcsin (c x)}dx}{b}+\frac {\int \frac {1}{a+b \arcsin (c x)}dx}{b c}-\frac {x \left (1-c^2 x^2\right )}{b c (a+b \arcsin (c x))}\)

\(\Big \downarrow \) 5134

\(\displaystyle \frac {\int \frac {\cos \left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))}{b^2 c^2}-\frac {3 c \int \frac {x^2}{a+b \arcsin (c x)}dx}{b}-\frac {x \left (1-c^2 x^2\right )}{b c (a+b \arcsin (c x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sin \left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}+\frac {\pi }{2}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))}{b^2 c^2}-\frac {3 c \int \frac {x^2}{a+b \arcsin (c x)}dx}{b}-\frac {x \left (1-c^2 x^2\right )}{b c (a+b \arcsin (c x))}\)

\(\Big \downarrow \) 3784

\(\displaystyle \frac {\cos \left (\frac {a}{b}\right ) \int \frac {\cos \left (\frac {a+b \arcsin (c x)}{b}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))-\sin \left (\frac {a}{b}\right ) \int -\frac {\sin \left (\frac {a+b \arcsin (c x)}{b}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))}{b^2 c^2}-\frac {3 c \int \frac {x^2}{a+b \arcsin (c x)}dx}{b}-\frac {x \left (1-c^2 x^2\right )}{b c (a+b \arcsin (c x))}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\sin \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {a+b \arcsin (c x)}{b}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))+\cos \left (\frac {a}{b}\right ) \int \frac {\cos \left (\frac {a+b \arcsin (c x)}{b}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))}{b^2 c^2}-\frac {3 c \int \frac {x^2}{a+b \arcsin (c x)}dx}{b}-\frac {x \left (1-c^2 x^2\right )}{b c (a+b \arcsin (c x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sin \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {a+b \arcsin (c x)}{b}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))+\cos \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {a+b \arcsin (c x)}{b}+\frac {\pi }{2}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))}{b^2 c^2}-\frac {3 c \int \frac {x^2}{a+b \arcsin (c x)}dx}{b}-\frac {x \left (1-c^2 x^2\right )}{b c (a+b \arcsin (c x))}\)

\(\Big \downarrow \) 3780

\(\displaystyle \frac {\cos \left (\frac {a}{b}\right ) \int \frac {\sin \left (\frac {a+b \arcsin (c x)}{b}+\frac {\pi }{2}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))+\sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a+b \arcsin (c x)}{b}\right )}{b^2 c^2}-\frac {3 c \int \frac {x^2}{a+b \arcsin (c x)}dx}{b}-\frac {x \left (1-c^2 x^2\right )}{b c (a+b \arcsin (c x))}\)

\(\Big \downarrow \) 3783

\(\displaystyle -\frac {3 c \int \frac {x^2}{a+b \arcsin (c x)}dx}{b}+\frac {\cos \left (\frac {a}{b}\right ) \operatorname {CosIntegral}\left (\frac {a+b \arcsin (c x)}{b}\right )+\sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a+b \arcsin (c x)}{b}\right )}{b^2 c^2}-\frac {x \left (1-c^2 x^2\right )}{b c (a+b \arcsin (c x))}\)

\(\Big \downarrow \) 5146

\(\displaystyle -\frac {3 \int \frac {\cos \left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right ) \sin ^2\left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right )}{a+b \arcsin (c x)}d(a+b \arcsin (c x))}{b^2 c^2}+\frac {\cos \left (\frac {a}{b}\right ) \operatorname {CosIntegral}\left (\frac {a+b \arcsin (c x)}{b}\right )+\sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a+b \arcsin (c x)}{b}\right )}{b^2 c^2}-\frac {x \left (1-c^2 x^2\right )}{b c (a+b \arcsin (c x))}\)

\(\Big \downarrow \) 4906

\(\displaystyle -\frac {3 \int \left (\frac {\cos \left (\frac {a}{b}-\frac {a+b \arcsin (c x)}{b}\right )}{4 (a+b \arcsin (c x))}-\frac {\cos \left (\frac {3 a}{b}-\frac {3 (a+b \arcsin (c x))}{b}\right )}{4 (a+b \arcsin (c x))}\right )d(a+b \arcsin (c x))}{b^2 c^2}+\frac {\cos \left (\frac {a}{b}\right ) \operatorname {CosIntegral}\left (\frac {a+b \arcsin (c x)}{b}\right )+\sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a+b \arcsin (c x)}{b}\right )}{b^2 c^2}-\frac {x \left (1-c^2 x^2\right )}{b c (a+b \arcsin (c x))}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\cos \left (\frac {a}{b}\right ) \operatorname {CosIntegral}\left (\frac {a+b \arcsin (c x)}{b}\right )+\sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a+b \arcsin (c x)}{b}\right )}{b^2 c^2}-\frac {3 \left (\frac {1}{4} \cos \left (\frac {a}{b}\right ) \operatorname {CosIntegral}\left (\frac {a+b \arcsin (c x)}{b}\right )-\frac {1}{4} \cos \left (\frac {3 a}{b}\right ) \operatorname {CosIntegral}\left (\frac {3 (a+b \arcsin (c x))}{b}\right )+\frac {1}{4} \sin \left (\frac {a}{b}\right ) \text {Si}\left (\frac {a+b \arcsin (c x)}{b}\right )-\frac {1}{4} \sin \left (\frac {3 a}{b}\right ) \text {Si}\left (\frac {3 (a+b \arcsin (c x))}{b}\right )\right )}{b^2 c^2}-\frac {x \left (1-c^2 x^2\right )}{b c (a+b \arcsin (c x))}\)

input
Int[(x*Sqrt[1 - c^2*x^2])/(a + b*ArcSin[c*x])^2,x]
 
output
-((x*(1 - c^2*x^2))/(b*c*(a + b*ArcSin[c*x]))) + (Cos[a/b]*CosIntegral[(a 
+ b*ArcSin[c*x])/b] + Sin[a/b]*SinIntegral[(a + b*ArcSin[c*x])/b])/(b^2*c^ 
2) - (3*((Cos[a/b]*CosIntegral[(a + b*ArcSin[c*x])/b])/4 - (Cos[(3*a)/b]*C 
osIntegral[(3*(a + b*ArcSin[c*x]))/b])/4 + (Sin[a/b]*SinIntegral[(a + b*Ar 
cSin[c*x])/b])/4 - (Sin[(3*a)/b]*SinIntegral[(3*(a + b*ArcSin[c*x]))/b])/4 
))/(b^2*c^2)
 

3.4.83.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3780
Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinInte 
gral[e + f*x]/d, x] /; FreeQ[{c, d, e, f}, x] && EqQ[d*e - c*f, 0]
 

rule 3783
Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosInte 
gral[e - Pi/2 + f*x]/d, x] /; FreeQ[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - 
c*f, 0]
 

rule 3784
Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[Cos[(d* 
e - c*f)/d]   Int[Sin[c*(f/d) + f*x]/(c + d*x), x], x] + Simp[Sin[(d*e - c* 
f)/d]   Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f}, x] 
&& NeQ[d*e - c*f, 0]
 

rule 4906
Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b 
_.)*(x_)]^(n_.), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin[a + b*x 
]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && IG 
tQ[p, 0]
 

rule 5134
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[1/(b*c)   Su 
bst[Int[x^n*Cos[-a/b + x/b], x], x, a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, 
c, n}, x]
 

rule 5146
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[1 
/(b*c^(m + 1))   Subst[Int[x^n*Sin[-a/b + x/b]^m*Cos[-a/b + x/b], x], x, a 
+ b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]
 

rule 5214
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.)*((d_) + (e_. 
)*(x_)^2)^(p_.), x_Symbol] :> Simp[(f*x)^m*Sqrt[1 - c^2*x^2]*(d + e*x^2)^p* 
((a + b*ArcSin[c*x])^(n + 1)/(b*c*(n + 1))), x] + (-Simp[f*(m/(b*c*(n + 1)) 
)*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p 
- 1/2)*(a + b*ArcSin[c*x])^(n + 1), x], x] + Simp[c*((m + 2*p + 1)/(b*f*(n 
+ 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   Int[(f*x)^(m + 1)*(1 - c^2*x^2 
)^(p - 1/2)*(a + b*ArcSin[c*x])^(n + 1), x], x]) /; FreeQ[{a, b, c, d, e, f 
}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1] && IGtQ[2*p, 0] && NeQ[m + 2*p + 1 
, 0] && IGtQ[m, -3]
 
3.4.83.4 Maple [A] (verified)

Time = 0.19 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.49

method result size
default \(\frac {3 \arcsin \left (c x \right ) \operatorname {Si}\left (3 \arcsin \left (c x \right )+\frac {3 a}{b}\right ) \sin \left (\frac {3 a}{b}\right ) b +3 \arcsin \left (c x \right ) \operatorname {Ci}\left (3 \arcsin \left (c x \right )+\frac {3 a}{b}\right ) \cos \left (\frac {3 a}{b}\right ) b +\arcsin \left (c x \right ) \operatorname {Si}\left (\arcsin \left (c x \right )+\frac {a}{b}\right ) \sin \left (\frac {a}{b}\right ) b +\arcsin \left (c x \right ) \operatorname {Ci}\left (\arcsin \left (c x \right )+\frac {a}{b}\right ) \cos \left (\frac {a}{b}\right ) b +3 \,\operatorname {Si}\left (3 \arcsin \left (c x \right )+\frac {3 a}{b}\right ) \sin \left (\frac {3 a}{b}\right ) a +3 \,\operatorname {Ci}\left (3 \arcsin \left (c x \right )+\frac {3 a}{b}\right ) \cos \left (\frac {3 a}{b}\right ) a +\operatorname {Si}\left (\arcsin \left (c x \right )+\frac {a}{b}\right ) \sin \left (\frac {a}{b}\right ) a +\operatorname {Ci}\left (\arcsin \left (c x \right )+\frac {a}{b}\right ) \cos \left (\frac {a}{b}\right ) a -x b c -\sin \left (3 \arcsin \left (c x \right )\right ) b}{4 c^{2} \left (a +b \arcsin \left (c x \right )\right ) b^{2}}\) \(223\)

input
int(x*(-c^2*x^2+1)^(1/2)/(a+b*arcsin(c*x))^2,x,method=_RETURNVERBOSE)
 
output
1/4/c^2*(3*arcsin(c*x)*Si(3*arcsin(c*x)+3*a/b)*sin(3*a/b)*b+3*arcsin(c*x)* 
Ci(3*arcsin(c*x)+3*a/b)*cos(3*a/b)*b+arcsin(c*x)*Si(arcsin(c*x)+a/b)*sin(a 
/b)*b+arcsin(c*x)*Ci(arcsin(c*x)+a/b)*cos(a/b)*b+3*Si(3*arcsin(c*x)+3*a/b) 
*sin(3*a/b)*a+3*Ci(3*arcsin(c*x)+3*a/b)*cos(3*a/b)*a+Si(arcsin(c*x)+a/b)*s 
in(a/b)*a+Ci(arcsin(c*x)+a/b)*cos(a/b)*a-x*b*c-sin(3*arcsin(c*x))*b)/(a+b* 
arcsin(c*x))/b^2
 
3.4.83.5 Fricas [F]

\[ \int \frac {x \sqrt {1-c^2 x^2}}{(a+b \arcsin (c x))^2} \, dx=\int { \frac {\sqrt {-c^{2} x^{2} + 1} x}{{\left (b \arcsin \left (c x\right ) + a\right )}^{2}} \,d x } \]

input
integrate(x*(-c^2*x^2+1)^(1/2)/(a+b*arcsin(c*x))^2,x, algorithm="fricas")
 
output
integral(sqrt(-c^2*x^2 + 1)*x/(b^2*arcsin(c*x)^2 + 2*a*b*arcsin(c*x) + a^2 
), x)
 
3.4.83.6 Sympy [F]

\[ \int \frac {x \sqrt {1-c^2 x^2}}{(a+b \arcsin (c x))^2} \, dx=\int \frac {x \sqrt {- \left (c x - 1\right ) \left (c x + 1\right )}}{\left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}}\, dx \]

input
integrate(x*(-c**2*x**2+1)**(1/2)/(a+b*asin(c*x))**2,x)
 
output
Integral(x*sqrt(-(c*x - 1)*(c*x + 1))/(a + b*asin(c*x))**2, x)
 
3.4.83.7 Maxima [F]

\[ \int \frac {x \sqrt {1-c^2 x^2}}{(a+b \arcsin (c x))^2} \, dx=\int { \frac {\sqrt {-c^{2} x^{2} + 1} x}{{\left (b \arcsin \left (c x\right ) + a\right )}^{2}} \,d x } \]

input
integrate(x*(-c^2*x^2+1)^(1/2)/(a+b*arcsin(c*x))^2,x, algorithm="maxima")
 
output
(c^2*x^3 - (b^2*c*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + a*b*c)*inte 
grate((3*c^2*x^2 - 1)/(b^2*c*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + 
a*b*c), x) - x)/(b^2*c*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + a*b*c)
 
3.4.83.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 608 vs. \(2 (140) = 280\).

Time = 0.40 (sec) , antiderivative size = 608, normalized size of antiderivative = 4.05 \[ \int \frac {x \sqrt {1-c^2 x^2}}{(a+b \arcsin (c x))^2} \, dx=\frac {3 \, b \arcsin \left (c x\right ) \cos \left (\frac {a}{b}\right )^{3} \operatorname {Ci}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (c x\right )\right )}{b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}} + \frac {3 \, b \arcsin \left (c x\right ) \cos \left (\frac {a}{b}\right )^{2} \sin \left (\frac {a}{b}\right ) \operatorname {Si}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (c x\right )\right )}{b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}} + \frac {3 \, a \cos \left (\frac {a}{b}\right )^{3} \operatorname {Ci}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (c x\right )\right )}{b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}} + \frac {3 \, a \cos \left (\frac {a}{b}\right )^{2} \sin \left (\frac {a}{b}\right ) \operatorname {Si}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (c x\right )\right )}{b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}} + \frac {{\left (c^{2} x^{2} - 1\right )} b c x}{b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}} - \frac {9 \, b \arcsin \left (c x\right ) \cos \left (\frac {a}{b}\right ) \operatorname {Ci}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (c x\right )\right )}{4 \, {\left (b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}\right )}} + \frac {b \arcsin \left (c x\right ) \cos \left (\frac {a}{b}\right ) \operatorname {Ci}\left (\frac {a}{b} + \arcsin \left (c x\right )\right )}{4 \, {\left (b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}\right )}} - \frac {3 \, b \arcsin \left (c x\right ) \sin \left (\frac {a}{b}\right ) \operatorname {Si}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (c x\right )\right )}{4 \, {\left (b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}\right )}} + \frac {b \arcsin \left (c x\right ) \sin \left (\frac {a}{b}\right ) \operatorname {Si}\left (\frac {a}{b} + \arcsin \left (c x\right )\right )}{4 \, {\left (b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}\right )}} - \frac {9 \, a \cos \left (\frac {a}{b}\right ) \operatorname {Ci}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (c x\right )\right )}{4 \, {\left (b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}\right )}} + \frac {a \cos \left (\frac {a}{b}\right ) \operatorname {Ci}\left (\frac {a}{b} + \arcsin \left (c x\right )\right )}{4 \, {\left (b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}\right )}} - \frac {3 \, a \sin \left (\frac {a}{b}\right ) \operatorname {Si}\left (\frac {3 \, a}{b} + 3 \, \arcsin \left (c x\right )\right )}{4 \, {\left (b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}\right )}} + \frac {a \sin \left (\frac {a}{b}\right ) \operatorname {Si}\left (\frac {a}{b} + \arcsin \left (c x\right )\right )}{4 \, {\left (b^{3} c^{2} \arcsin \left (c x\right ) + a b^{2} c^{2}\right )}} \]

input
integrate(x*(-c^2*x^2+1)^(1/2)/(a+b*arcsin(c*x))^2,x, algorithm="giac")
 
output
3*b*arcsin(c*x)*cos(a/b)^3*cos_integral(3*a/b + 3*arcsin(c*x))/(b^3*c^2*ar 
csin(c*x) + a*b^2*c^2) + 3*b*arcsin(c*x)*cos(a/b)^2*sin(a/b)*sin_integral( 
3*a/b + 3*arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) + 3*a*cos(a/b)^3* 
cos_integral(3*a/b + 3*arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) + 3* 
a*cos(a/b)^2*sin(a/b)*sin_integral(3*a/b + 3*arcsin(c*x))/(b^3*c^2*arcsin( 
c*x) + a*b^2*c^2) + (c^2*x^2 - 1)*b*c*x/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) 
- 9/4*b*arcsin(c*x)*cos(a/b)*cos_integral(3*a/b + 3*arcsin(c*x))/(b^3*c^2* 
arcsin(c*x) + a*b^2*c^2) + 1/4*b*arcsin(c*x)*cos(a/b)*cos_integral(a/b + a 
rcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) - 3/4*b*arcsin(c*x)*sin(a/b) 
*sin_integral(3*a/b + 3*arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) + 1 
/4*b*arcsin(c*x)*sin(a/b)*sin_integral(a/b + arcsin(c*x))/(b^3*c^2*arcsin( 
c*x) + a*b^2*c^2) - 9/4*a*cos(a/b)*cos_integral(3*a/b + 3*arcsin(c*x))/(b^ 
3*c^2*arcsin(c*x) + a*b^2*c^2) + 1/4*a*cos(a/b)*cos_integral(a/b + arcsin( 
c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) - 3/4*a*sin(a/b)*sin_integral(3*a/ 
b + 3*arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2) + 1/4*a*sin(a/b)*sin_ 
integral(a/b + arcsin(c*x))/(b^3*c^2*arcsin(c*x) + a*b^2*c^2)
 
3.4.83.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x \sqrt {1-c^2 x^2}}{(a+b \arcsin (c x))^2} \, dx=\int \frac {x\,\sqrt {1-c^2\,x^2}}{{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2} \,d x \]

input
int((x*(1 - c^2*x^2)^(1/2))/(a + b*asin(c*x))^2,x)
 
output
int((x*(1 - c^2*x^2)^(1/2))/(a + b*asin(c*x))^2, x)